EE115 Homework, Chapter 21

and so on……
Answers
21.2
a) Vinduced is equal and contrary to the applied Voltage.
Vi = -L*dI/dt = -Va
a) Vi=-10 V or Vi=+10 V depending if i is increasing or decreasing through 0 mA
b) Vi = 0V
c) Vi = 0 V
21.4
a) I(R) = V(R)/R = 60/15 = 4 A
b) I(L) = V(L)/XL = 80/20 =4 A
c) I(T) = I(R)= I(L) = 4 A, this is because it is a series circuit
21.6.
V(T) = 100 V = sqrt(V(R)^2 +V(L)^2) = sqrt(60^2+80^2)
21.8
a) V(R)= I*R =1.6*10^3*30*10^-3 =1.6*30 = 48 V
b) V(L) = 30mA *1.2K =30*1.2 = 36 V
c) V(T) = sqrt(V(R)^2+V(L)^2) =sqrt(48^2+36^2) =60 V
21.10.
V(T) = sqrt(V(r)^2+V(L)^2)
a) sqrt(12^2+6^2) = 13.42 V
b) 47.17 V
c) 18.36 V
d) 56.57 V
21.12 See attached figure 21-12.jpg
21.14.
Z(T) = R+i*XL = 20+i*60 ohms, i = sqrt(-1)
module(Z(T)) = sqrt(20*20+60*60) = 63.24 ohms
I= V(T)/Z = 12/(20+i*60) A
module(I) = V(T)/module(Z) = 12/63.24 =0.19 A
V(L)^2+V(R)^2 = V(T)^2
V(R)/V(L)= R/X(L) = 1/3
V(L) =3*V(R)
9*V(R)^2 +V(R)^2 =144
V(R) = sqrt(14.4) = 3.79 V
V(L) = 3*V(R) = 11.38 V
tan(theta) = XL/R = 3, theta = 71.56 deg
21.16.
Z(T) = R+i*XL
module(Z) = sqrt(R^2+XL^2)
a) Z =40+i*30 ohms
module(Z) = 50 ohms
b) Z =50+i*50 ohms
module(Z) = 70.71 ohms
c) Z = 100+i*10 ohms
module(Z) = 100.5 oh ms
d) Z = 10+i*100 ohms
module(Z) = 100.5 ohms
I=V(T)/Z
module(I) = V(T)/module(Z)
a) I =50/(40+30*i)
module(I) = 50/50 =1 A
b) I = 141.4/(50+i*50)
module(I) =141.4/70.71 = 2 A
c) I = 10/(100+10*i)
module(I) = 10/100.5 =0.0995 =0.1 A
d) I = 10/(10+100*i)
module(I) = 0.0995 =0.1 A
V(L)^2+V(R)^2= V(T)^2
V(L)/V(R) = XL/R
or simpler
V(L) = module(I) * XL
V(R) = module(I)*R
a) V(L)=1*30= 30 V
V(R) =1*40= 40 V
b) VL= 2*50 =100 V
VR =2*50 =100 V
c)VL=0.1*10 =1 V
VR= 0.1*100 =10 V
d) VL= 0.1*100 =10 V
VR= 0.1*10 =1 V
tan(theta) = XL/R
a) tan(theta) = 3/4, theta = 36.87 deg
b) tan(theta) =1 , theta = 45 deg
c) tan(theta) = 1/10, theta = 5.71 deg
d) than( theta) = 10, theta = 84.29 deg
21.18
a) XL= 2*pi*F*L increseas with F
b) ZT = R+i*XL increases with F (because XL increases with F)
module(ZT) = sqrt(R^2+XL^2) increases with F
c) I = VT/ZT decreases with F
d) V(R) = I*R decreases with F (because I decreases with F)
e) V(L) = I*XL = VT*XL/ZT = VT*(2*pi*F*L)/(R+i*2*pi*F*L) stays the same with F
d) tan(Theta) = XL/R = 2*pi*F* (L/R) increases with F hence theta increases with F
21.20.
a and b) V(R) = V(L) = VA = 12 V because it is a parallel circuit
21.22
IR = VA/R = 12/30 = 0.4 A
IL = VA/XL = 12/40 = 0.3 A
IT = sqrt(IR^2+IL^2) = 0.5 A
module(Zeq) = Va/IT =12/0.5 = 24 ohms
Zeq = R*XL/(R+XL) = 30*40*i/(30+40*i)
tan(theta) = XL/R = 4/3
theta =53.13 deg
21.24
IR = VA/R =36/2K = 18 mA
IL = VA/XL = 36/1K = 36 mA
IT= sqrt(IR^2+IL^2) = 40.25 mA
module(Zeq) = VA/IT = 36/40.25 mA = 894 ohms
tan(theta) = XL/R = 0.5, theta = 26.56 deg
21.26
IR = VA/R =24/10 =2.4 A
IL = VA/XL =24/4 =6 A
IT= sqrt(IR^2+IL^2) = 6.46 A
module(ZEq) = VA/IT = 24/6.46 = 3.71 ohms
tan(theta) = XL/R =2/5, theta =21.8 degree
21.28.
IR= VA/R IL= VA/XL IT =sqrt(IR^2+IL^2) module(ZEQ) = VA/IT tan(theta) = XL/R
a) IR = 1A, IL= 1A IT =1.41 A Zeq =50/1.41 = 35.46 ohms tan(theta) = 1 theta = 45 deg
b) IR=2 A, IL =0.2 A IT =2.01 A Zeq =9.95 ohms tan(theta) = 10, theta =84.29 deg
c) IR =0.2 A, IL =2 A, IT =2.01 A Zeq =9.95 ohms tan(theta) = 0.1, theta = 5.71 deg
21.30
XL= 2*pi*F*L =2*pi*3183*0.05 = 1000 ohm
IR = VA/R = 15/1.5K =10 mA
IL = VA/XL = 15/1K =15 mA
IT = sqrt(IR^2+IL^2) = 18.02 mA
Zeq = VA/IT = 15/18.02 mA = 832 ohm
tan(theta) = XL/R =1/1.5 theta =33.69 deg
21.32
a) IR = VA/R stays the same with F
b) IL = VA/XL increases if F decreases
c) IT = sqrt(IR^2+IL^2) increases if F decreases
d) Zeq = V/IT decreases if F decreases (because IT increases)
e) than(theta) = XL/R = 2*pi*F *(L/R) decreases if F decreases, hence theta decreases
21.34
By DEFINITION the quality factor Q = XL/R = omega*(L/R) therefore the increasing of the quality factor at higher
frequencies is limited by the resistance of the coil.
21.36
Q = XL/R = 2*pi*F*L/R
R = 2*pi*F*L/Q =2*pi*5*10^6*350*10^-6/25 =439.8 ohm