Stokes Theorem

$U = int (C) (E*d L)$
$Phi = int (S) (B*d A)$
$U = -d(Phi)/d t$
$int(C) (E*d L) = -d*[int(S) (B*d A)] = int (S) (-dB/d t*d A)$ (1)
stokes theorem for function $f$ is
$int(C) (f*d L) =int (S) curl(f) *d A$
therefore (1) becomes
$int_{(S)} (curl(E)*d A)=int_{(S)} ((-dB/d t)*d A)$
thus
$curl(E) =-dB/d t$