Coriolis Force in Physics

A bird of mass 3 kg is flying at 20 m/s in latitude 45 degree, heading west. Find the horizontal and vertical components of the Coriolis force acting on it.

Show My Homework - Coriolis

The figure is below. The angular rotation speed of earth at 45 degree  latitude is

$\Omega =\omega_0*\begin{pmatrix}

0\\

\cos(45)\\

\sin(45)

\end{pmatrix}$   where $ω_0=2π/(24*3600)=7.27*10^{-5} rad/sec$
$ω_0$ is the rotational speed of the Earth at the equator.

The speed of the bird heading west has the components:

$v=\begin{pmatrix}

-20\\

0\\

0

\end{pmatrix}$

The Coriolis acceleration is by definition:

$a_C=-2(\Omega \times v)=-2\omega_0*\begin{pmatrix}

i &j  &k \\

0 &\cos(45)  &\sin(45) \\

-20 &0  &0

\end{pmatrix}=2\omega_0\begin{pmatrix}

0\\

20\sin(45)\\

-20\cos(45)\end{pmatrix}$

Therefore $a_C=\begin{pmatrix}

0\\

2.056*10^{-3}\\

-2.056*10^{-3}\end{pmatrix} (m/s^2)$

The Coriolis force is thus

$F_C=m*a_C=\begin{pmatrix}

0\\

6.169*10^{-3}\\

-6.169*10^{-3}\end{pmatrix} (N)$

The horizontal component of the Coriolis force is $F_{C y}=6.169*10^{-3}  N$ and the vertical component of the Coriolis force is $F_{C z}=-6.169*10^{-3} N$  (it is downwards).