Position probability in finite wells
The normalized states of a particle in a well are
$\varphi_{even}(x)=\sqrt{a+(1/q)}*\left\{\begin{matrix}
e^{q a}\cos(k a)e^{q x} & \text{for } x < -a \\
\cos(k x) & \text{for }-a\leq x \leq a \\
e^{q a}\cos(k a)e^{-q x} & \text{for } x > a
\end{matrix}\right.$
$\varphi_{odd}(x)=\sqrt{a+(1/q)}*\left\{\begin{matrix}
-e^{q a}\cos(k a)e^{q x} & \text{for } x < -a \\
\sin(k x) & \text{for }-a\leq x \leq a \\
e^{q a}\cos(k a)e^{-q x} & \text{for } x > a
\end{matrix}\right.$
Find the probability that a particle in the ground state of a finite well is measured to have a position outside of the well. Put the expression in terms of:
(1) $k$, $q$ and $a$ and
(2) $z$ and $z_0$.
In the ground state the wave function is even (see the figure at the bottom), that is symmetrical with
respect to x=0.
$\varphi_{even}(x)=\sqrt{a+(1/q)}*\left\{\begin{matrix}
e^{q a}\cos(k a)e^{q x} & \text{for } x < -a \\
\cos(k x) & \text{for }-a\leq x \leq a \\
e^{q a}\cos(k a)e^{-q x} & \text{for } x > a
\end{matrix}\right.$
The probability to find the particle outside the well (in the walls) is
$P=\int_{-\infty}^{-a} |\varphi|^2 d x+\int_a^{+\infty}|\varphi|^2 d x=$
$=[a+(1/q)]*e^{2qa} [\cos(k a)]^2 *[\int_{-\infty}^{-a} e^{2qx}*d x+ \int_a^{+∞} e^{-2qx} d x]$
$P=[a+(1/q)] e^{2qa} [cos(k a) ]^2 *[(1/2q)(e^{-2qa}-1)-(1/2q)(1-e^{-2qa})]$
$P=\frac{1}{4q} [a+\frac{1}{q}]* [cos(k a)]^2*e^{2qa} [e^{-2qa}-1]=\frac{1}{4q}[a+\frac{1}{q}]*[cos(k a) ]^2*(1-e^{2qa})$
If we make the notations
$z_0=(\sqrt{2mV_0 }/\hbar)*a$ and $z=(\sqrt{2mE_1}/\hbar)*a$
We have
$k a=(\sqrt{2mE_1}/\hbar)*a=z$ inside the well, and $q a=\sqrt{z_0^2-z^2}$ outside the well
And the probability is
$P=\frac {a} {4\sqrt{z_0^2-z^2 }} (a+\frac{a}{\sqrt{z_0^2-z^2}}) cos^2 z*[1-exp[2\sqrt{(z_0^2-z^2 )} ]]$