Circle with Nonuniform Charge
Determine the potential on the z-axis of a nonuniform charged circle that has a linear charge density
a) $lambda =C*sin phi$
b) $lambda =C*sin 2phi$
c)$lambda =C*sin 3phi$
d) $lambda =Cphi$

$d q=λ*d L=λR*dϕ$ and $d V(P)=(kλ*d L)/sqrt{(z^2+R^2 )}=(kλR*dϕ)/sqrt{(z^2+R^2 )}$
for $λ=C* sin ϕ$ we have
$V(P)=∫_0^2πkCR/sqrt{(z^2+R^2 )}*sin ϕ*dϕ=0$
for $λ=C*sin 2ϕ$ we have
$V(P)=k C R/sqrt{(z^2+R^2 )} ∫_0^2π sin 2ϕ*dϕ=-k C R/sqrt{(z^2+R^2 })*cos 2ϕ/2 |_0^2π=0$
for $λ=C*sin 3ϕ$ we have
$V(P)=k C R/sqrt{(z^2+R^2 )} ∫_0^2π sin 3ϕ*dϕ=-k C R/sqrt{(z^2+R^2 )}*cos 3ϕ/3 |_0^2π=0$
for $λ=C*ϕ$ we have $V(P)=k C R/sqrt{(z^2+R^2 )} ∫_0^2π ϕdϕ=2π^2 k C R/sqrt{(z^2+R^2 )}$