Comutators Identities
3. Prove the following identity
a) the comutator of two Hermitian operators is anti-Hermitian.
b) product of comutators $[AB, CD]=-AC\{D,B\}+A\{C.B\}D+-C\{D,A\}B+\{C,A\}DB$
a)
$A$ is hermitic if $A=A^\dagger$ ; $A$ is antihermitic if $A=-A^\dagger$
$-[QR]=[RQ]=RQ-QR=R^\dagger Q^\dagger-Q^\dagger R^\dagger=(QR-RQ)^\dagger=[QR]^\dagger$ so $[QR]$ is antihemitic
We use above and the fact that $R$ and $Q$ are hermitic so that $R=R^\dagger$ and $Q=Q^\dagger$
b)
by definition $[AB]=AB-BA$ and $\{AB\}=AB+BA$
Therefore
$[AB,CD]=ABCD-CDAB$
$-AC\{DB\}+A\{CB\}D-C\{DA\}B+\{CA\}DB=$
$=-ACDB-ACBD+ACBD+ABCD-CDAB-CADB+CADB+ACBD=$
$=ABCD-CDAB$
6. Prove the Schwarz inequality i.e. $(<\alpha||\alpha>*<\beta||\beta>) \geq |<\alpha||\beta>|^2$
Schwartz inequality
$<a|a><b|b> ≥|<a|b>|^2$
Take
$|c>=|a>+λ*|b>$
$0 ≤ <c|c>=(<a|+λ^* |b>)(|a>+λ|b>)=<a|a>+λ<a|b>+λ^*<b|a>+|λ|^2<b|b>$
The expression above is minimum with respect to λ when its derivative is zero. This means
$λ=-(<b|a>)/(<b|b>)$
Place this value of λ in the expression above and one obtains the equation
$<a|a><b|b>-|<a|b>|^2≥0$ so that $<a|a><b|b> ≥ |<a,b>|^2$
7. Prove that
a) $[\Delta A,\Delta B]=[A,B]$
b) If $A$ and $B$ are Hermitian $\{A,B\}^\dagger=\{A,B\}$
a)
$[ΔA,ΔB]=[(A-<A>,B-<B>]=$
$=(A-<A>)(B-<B>)-(B-<B>)(A-<A>)=$
$=(AB-A<B>-<A>B+<A><B>)-$
$-(BA-B<A>-<B>A+<B><A>)=$
$=AB-A<B>-<A>B+<A><B>-$
$-BA+<A>B+A<B>-<A><B> =$
$=AB-BA=[A,B]$
b)
$\{AB\}^\dagger=(AB+BA)^\dagger=(AB)^\dagger+ (BA)^\dagger=B^\dagger A^\dagger+A^\dagger B^\dagger=BA+AB=AB+BA=\{AB\}$