Hamiltonian States (3-325)
Consider a system with a hamiltonian
$H=\frac{1}{\sqrt{2}}\begin{pmatrix}1&-i&0\\1&3&3\\0&3&0\end{pmatrix}$ in the initial state given by $|\psi_0>=\begin{pmatrix}4-1\\-2+5i\\3+2i\end{pmatrix}$
a) If the energy is measured, which values will be obtained, and with which probabilities?
b) Find the state of a system in the latter time.
$H$ is hermitian $H=(H^T )^*$ and therefore it has real eigenvalues. Its eigenvalues and normalized eigenvectors (see question 3) are
$E_1=5$; $E_2=-2$; $E_3=0$
$|ϕ_1> =\frac{1}{√35}*\begin{pmatrix}-i\\5\\3\end{pmatrix}$ ;$|ϕ_2> =\frac{1}{√14}\begin{pmatrix}-i\\-2\\3\end{pmatrix}$ ;$|ϕ_3> =\frac{1}{√10}*\begin{pmatrix}3i\\0\\1\end{pmatrix}$
$H$ is hermitic so that its eigenvectors are orthogonal. The initial state $|ψ_0>$ can be written as a linear combination of the eigenvectors
$|ψ_0>=i√35*|ϕ_1>+√14*|ϕ_2> -i√10*|ϕ_3>$
Normalization of the initial state yields
$|Ψ_0>=i\sqrt{35/59}*|ϕ_1>+\sqrt{14/59}*|ϕ_2> -i\sqrt{10/59}*|ϕ_3>$
Therefore the values obtained after measuring the energy are
$E_1=5$; $4E_2=-2$; $E_3=0$
With the probabilities:
$P_1=|i\sqrt{35/59}|^2=35/59$ ;$P_2=14/59$; $P_3=10/59$
b)
At a later time $t>0$ taking $ℏ=1$ we have
$|Ψ_0>=i\sqrt{\frac{35}{59}}|ϕ_1>exp(-iE_1 t) +\sqrt{\frac{14}{59}}|ϕ_2>exp(-iE_2 t) -i\sqrt{\frac{10}{59}}|ϕ_3>exp(-iE_3 t)$
$|Ψ_0>=i\sqrt{\frac{35}{59}}|ϕ_1>exp(-5it) +\sqrt{\frac{14}{59}}|ϕ_2>exp(2it) -i\sqrt{\frac{10}{59}}|ϕ_3>$
or writing $i$ as $\exp(…)$:
$|Ψ_0>=\sqrt{\frac{35}{59}}|ϕ_1>exp(i(-5t+π/2) ) +\sqrt{\frac{14}{59}}|ϕ_2>exp(2it)+\sqrt{\frac{10}{59}}|ϕ_3>exp(i*3π/2)$