Partition Function (Quantum Oscillators)
For an ensemble of quantum oscillators $\omega_i=\sqrt{k_i/m_i}$ and $E_i=\hbar\omega_i(n_i+1/2)$ evaluate the partition function and the specific heat of an oscillator.
The partition function is
$Z=∑_n exp[-(\hbar ω(n+1/2))/k T]=exp(-(\hbar ω)/2kT)*∑_n exp(-(n\hbar ω)/k T)$
If we define the Einstein temperature as
$k T_E=\hbar ω$ and take into account that $∑_(n=0)^∞ exp(-n x)=e^x/(e^x-1)$
Then
$Z=exp(-T_E/T)*exp(T_E/T)/exp(T_E/T-1) =exp(T_E/2T)/(exp(T_E/T)-1)$
The energy is
$E=KT^2*d(ln(Z) )/d T=k*exp(T_E/T)/((exp(T_E/T)-1))-k/2$
The specific heat is
$C v=d E/d T=k/T^2 *(exp((2T_E)/T)-exp(T_E/T)*(exp(T_E/T)-1))/(exp(T_E/T)-1)^2$
$C_v=1/T^2 *e^{1/T}/(e^{1/T}-1)^2$ taking $T_E=1$ and $k=1$
For $k=1$ and $T_E=1$ the graph of $C v$ is the following: for $T>>T_E (=1)$ one the value of $C v$ is approaching unity, which is consistent with the classical value $C v =k$ (for an average classical energy $E=k T$, the value of $C v=d E/d T =k$)
For small temperatures one can approximate
$e^{1/T}=e^x=1+x+x^2/2+⋯=1+1/T$
So that
$C_v=1/T^2 *e^(1/T)/(1+1/T-1)^2 =e^{1/T}$
So the function at $T<<T_E$ rises as an exponential.
By taking just the first state in the sum of the partition function one has
$Z=exp(-(\hbar ω)/k T)*exp(-(\hbar ω)/2kT)=exp(-(3T_E)/2T)$
$ln(Z)=-(3T_E)/2T$
and $E=k T^2*d(ln(Z) )/d T=(3kT_E)/2=constant$ so $C v=d E/d T=0$