Rotating Square Loop
For a square loop of side $a$ in a magnetic field $mathbf{B}=B_0[1-(x^2/l^2)]*hat x$ rotating with angular velocity $omega$ please find $E(t)$ induced in loop.

In text it says that the plate is square so I guess l=a in the definition of B
$B=B_0 (1-x^2/l^2 )*x ̂$
Cylindrical coordinates
$x=r*cos(ωt)$ and $y=r*sin(ωt)$
$dS=a*dr$
The flux is
$dϕ=B ⃗*dS ⃗=B_0 (1-(r^2 cos^2ωt)/l^2 )*(a*dr)*cos ωt$
(last $cos ωt$ comes from the scalar product.)
$ϕ_{tot} (t)=B_0 a*cos ωt ∫_0^a (1-(r^2 cos^2ωt)/l^2 )*dr$
$ϕ_{tot} (t)=B_0 a*cos ωt*(r-r^3/(3l^2 )*cos^2 ωt)|_0^a$
$ϕ_{tot} (t)=B_0 a*cos ωt (a-a^3/(3l^2 )*cos^2 ωt)$
$U=-(dϕ_{tot})/dt=$
$=B_0 a^2*sin ωt (1- a^2/(3l^2 )*cos^2 ωt)+B_0 a^2 cos ωt*((2 ωa^2)/(3l^2 )*sin ωt*cos ωt)$
$U(t)=B_0 a^2*sin ωt*[1-a^2/(3l^2 )*cos^2 ωt+2ω*a^2/(3l^2 )*cos^2 ωt]$
$U(t)= B_0 a^2*sin ωt[1-a^2/(3l^2 ) (2ω-1)*cos^2 ωt]$
$B(x)$ is constant for $a/l$ (it does depend just on $l$).