Solenoid Vector Potential

Please show that the Magnetic vector potential of a solenoid is consistent with the required values of it’s divergence, curl and laplacian in all regions.
$A_ϕ=μnI/2 s*ϕ ̂ $ inside the and $A_ϕ=μnI/2s R^2*ϕ ̂ $ outside
Cylindrical coordinates $(s,ϕ,z)$
$∇A=frac{1}{s}*frac{∂A_s}{∂s}*s ̂+frac{1}{s}*frac{∂A_ϕ}{∂ϕ} ϕ ̂+frac{∂A_z}{∂z}$
$∇×A=begin{vmatrix}s ̂/s&ϕ ̂&z ̂/s\∂/∂s&∂/∂ϕ&∂/∂z\0&sA_ϕ&0)end{vmatrix}=$
$=-frac{s ̂}{s}*frac{(∂(sA_ϕ))}{∂z}+frac{z ̂}{s} frac{(∂(sA_ϕ))}{∂s}$
and $∇^2 A=frac{1}{s}*frac{∂}{∂s} (s*frac{∂A}{∂s})$
For solenoid one has
$∇A=0$ ,$∇×A=B$ and $∆A=μ_0*J$
Inside
$∇A=frac{1}{s}*frac{(∂A_ϕ)}{∂ϕ} ϕ ̂=0$
$∇×A=frac{z ̂}{s} frac{(∂(sA_ϕ))}{∂s}=frac{z ̂}{s}*frac{∂}{∂s} (μnI/2 s^2 )=μnI=B$
$∇^2 A=frac{1}{s}*frac{∂}{∂s} (μnI/2 s)=μnI/2s=μNI/2sL=(μI_{tot})/Area=μJ$
Outside
$∇A=frac{1}{s}*frac{(∂A_ϕ)}{∂ϕ} ϕ ̂=0$
$∇×A=frac{z ̂}{s} frac{(∂(sA_ϕ))}{∂s}=frac{z ̂}{s}*frac{∂}{∂s} (μnI/2 R^2 )=0$
$∇^2 A=frac{1}{s}*frac{∂}{∂s} (μnI/2 R^2 )=0$ since $J_{outside}=0$