Spin States (3-325)
2. Use the following definitions
$S_x =(\hbar/2)\{|+><-|+|-><+|\}$ and $S_y =(\hbar/2)\{-i|+><-|+i|-><+|\}$
to show that $S_z=S_x \pm iS_y$
Notation $|m><n|=|m,n|$
$S_x=ℏ/2(|+,-| + |-,+|)$ and $S_y=-iℏ/2(|+,-| -|-,+|)$
Therefore
$S_+=ℏ*|+,-| =S_x+iS_y$ and $S_-=ℏ*|-,+|=S_x-iS_y$
4. Use the operator forms of $S_x$ and $S_z$ to evaluate $[S_x,S_z]$
$S_x=ℏ/2(|+,-| + |-,+|)$ and $S_z=ℏ/2(|+,+| -|-,-|)$
$[S_x,S_z ]=S_x S_z-S_z S_x=$
$=ℏ^2/4*(|+,-|+|-,+|)(|+,+|-|-,-|)-$
$-ℏ^2/4(|+,+|-|-,-|)(|+,-|+|-,+|)=$
$=ℏ^2/4*\{(|+,-||+,+|)-(|+,-||–|)+(|-,+||+,+|)- (|-,+||-,-|)\}-$
$-ℏ^2/4*\{(|+,+||+,-|)+ (|+,+||-,+|)-(|-,-||+,-|)-(|-,-||-,+|)\}=$
$=ℏ^2/4*(-|+,-|+|-,+|)-$
$-ℏ^2/4*(|+,-|-|-,+|)=-ℏ^2/2*(|+,-|-|-,+|)=-iℏ*S_y$
5. For the $S_z+$ state of a spin 1/2 system , find the dispersion of $S_x$, $S_y$ and $S_z$
Prove that the generalized uncertainty relation is satisfied by the product of the dispersions of $S_x$ and $S_y$.
a)
The $S_z+$ state is the $|+>=\begin{pmatrix}1\\0\end{pmatrix}$ state.
In short notation $<(ΔS_i )^2> = <S_i^2>-<S_i >^2$
$S_x=ℏ/2*\begin{pmatrix}0&1\\1&0\end{pmatrix}$; $S_y=ℏ/2*\begin{pmatrix}0&-i\\i&0\end{pmatrix}$; $S_z=ℏ/2*\begin{pmatrix}1&0\\0&-1\end{pmatrix}$
$<S_x> = <+|S_x |+> =ℏ/2*(1, 0)\begin{pmatrix}0&1\\1&0\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}=0$;
$<S_y>=<+|S_y |+> =⋯=0$; $<S_z>=⋯=ℏ/2$
$<S_x^2>=ℏ^2/4*(1, 0)\begin{pmatrix}0&1\\1&0\end{pmatrix}\begin{pmatrix}0&1\\1&0\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}=ℏ^2/4*(0, 1)\begin{pmatrix}0&1\\1&0\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}=$
$=ℏ^2/4*(1, 0)\begin{pmatrix}1\\0\end{pmatrix}=ℏ^2/4$
and
$<S_y^2>=⋯.=ℏ^2/4$ and $<S_z^2> =⋯=ℏ^2/4$
Therefore
$<(ΔS_x )^2> =ℏ^2/4-0^2=ℏ^2/4$; $<(ΔS_y )^2> =ℏ^2/4-0=ℏ^2/4$; $<(ΔS_z )^2> =ℏ^2/4-ℏ^2/4=0$
b)
$(<(ΔS_x )^2><(ΔS_y )^2>) ≥(1/2) |<[S_x,S_y ]>| =$
$=1/2*|i*ϵ_{xyz}*ℏ<S_z>|=1/2*ℏ*ℏ/2=ℏ^2/4$ TRUE